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We study the two-dimensional Ginzburg-Landau model of a neutral superfluid 
in the vicinity of the vortex unbinding transition. The model is mapped onto an 
effective interacting vortex gas by a systematic perturbative elimination of all 
fluctuating degrees of freedom (amplitude and phase of the order parameter 
field) except the vortex positions. In the Coulomb gas descriptions derived 
previously in the literature, thermal amplitude fluctuations were neglected 
altogether. We argue that if one includes the latter, the vortices still form a two- 
dimensional Coulomb gas, but the vortex fugacity can be substantially raised. 
Under the assumption that Minnhagen's generic phase diagram of the two- 
dimensional Coulomb gas is correct, our results then point to a first-order trans- 
ition rather than a Kosterlitz-Thouless transition, provided the Ginzburg- 
Landau correlation length is large enough in units of a microscopic cutoff length 
for fluctuations. The experimental relevance of these results is briefly discussed. 

KEY WORDS: Ginzburg-Landau model; X Y  model; two-dimensional 
Coulomb gas; Kosterlitz-Tbouless transition; vortices; fluctuations; super- 
conducting films. 

1. INTRODUCTION 

The  cri t ical  b e h a v i o r  of  t w o - d i m e n s i o n a l  (2D)  systems with  a c o n t i n u o u s  

in ternal  s y m m e t r y  has  been  a mos t  puzz l ing  p r o b l e m  for a l ong  time. Simple  

physical  rea l iza t ions  are  superf luid  o r  s u p e r c o n d u c t i n g  thin films, which  

on a p h e n o m e n o l o g i c a l  level can  bo th  be descr ibed  by a comp lex  o r d e r  

p a r a m e t e r  field ~ ,  the boson  or  C o o p e r - p a i r  " c o n d e n s a t e  wavefunc t ion . "  
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The internal symmetry is then a U(1) gauge symmetry acting on the phase 
of ~/'. 

Early theoretical work showed that the "usual" criterion for superfluid 
order in 3D bulk systems tll namely long-range order (LRO) of the field ~, 
is not satisfied in 2D films at any finite temperature, t2~ The reason is low- 
energy phase fluctuations, the Goldstone modes related to the broken 
gauge symmetry, leading to ~ correlations which decay algebraically to 
zero with distance. However, it was quickly realized t3~ that this "quasi"- 
LRO was sufficient to ensure superfluidity. The correct criterion for super- 
fluidity turned out to be rather a nonvanishing stiffness with respect to 
long-wavelength phase fluctuations (the helicity modulus ~-)~4~ than true 
LRO in ~. 

As a matter of fact, experimentally even very thin 4He films of a 
fraction of an atomic layer showed clear signatures of superfluidity (see refs. 
in ref. 5). Two-dimensional superconductivity was predicted 16'7~ for suf- 
ficiently "dirty" samples (high normal sheet resistance) and observed in 
continuous and granular thin films (see, e.g., refs. 8-1 1 ). 

The nature of the transition from this superfluid phase to a high- 
temperature phase with exponentially decaying ~ correlations was clarified 
by Berezinskii 1~21 and Kosterlitz and Thouless (KT). It3"t4) They realized the 
essential role of vortices, i.e., phase singularities with nonvanishing winding 
number ("vorticity"). The vortices interact logarithmically at large distan- 
ces, and thus at low temperatures they appear as bound pairs of zero total 
vorticity only which do not change the algebraic decay of the ~g correla- 
tions. However, at some finite temperature Tv, the largest vortex pairs in 
the system start to dissociate (unbind) by a collective screening mechanism, 
and the free vortices lead to an exponential decay of the correlations. (We 
use the notation Tv here in order to avoid confusion with a "conventional" 
critical point which will appear later.) 

Usual phenomenological models of superconducting or superfluid 
films are the Ginzburg-Landau (GL) model or the X Y  ("planar rotator") 
model, ~ respectively (see also Section2). The GL model is generally 
believed to provide an appropriate description of superconductors close 
to the bulk transition, since there is a microscopic derivation in the 
framework of Gor'kov theory (see, e.g., refs. 16). The X Y  model may be 
considered as the "phase-only" limit of the GL model, in which the 
modulus of ~g is fixed and only its phase is allowed to fluctuate, t~7~ 
Together with the idea of thermally excited vortex loops, it has been 
successfully employed to describe the superfluid transition of 4He in 3D ~8~ 
and 2D, tT' is) but there is no comparable microscopic justification as for the 
GL model in the case of superconductors. 

Since the KT transition is essentially caused by the interacting vortex 
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system only, it appears in its purest form in a corresponding model system 
of pointlike particles in 2D with a logarithmic interaction, the 2D Coulomb 
gas (2DCG) model (for a review see, e.g., ref. 19). This model depends on 
two independent, dimensionless parameters, a temperature TcG and a 
fugacity z cG of the particles. The GL and X Y  models may then be thought 
of as particular realizations of the CG model, represented by particular 
zCG(T cG ) lines.ltg~ 

Based on the ideas of Kosterlitz and Thouless, a systematic renor- 
realization group (RG) theory of the KT transition has been developed, 
usually starting from an XY or CG-type description. ~~ In the CG 
picture, the KT RG equations are flow equations in the zCC-T cG plane; 
the zCG(T cG) line of a particular realization serves as initial condition of 
the RG flow. In the RG framework it could for instance be shown ~z2) that 
the helicity modulus has a finite value I~(T~T~-~)v~O just below the 
transition and then drops discontinuously to zero. Furthermore, the ratio 
2nI~(T)/kBT tends to the universal value 4 at the transition ( T ~  TIv-~). 
This result may also be expressed in terms of pure CG quantities: general 
hydrodynamic arguments 1231 show that the quantity (eo(T cG) T cG)- t (Co 
being the k --, 0 limit of the CG dielectric function) corresponds exactly to 
the above-mentioned ratio 2n[(T)/kB T at all temperatures, in particular 
its discontinuity is the same. 

This famous "universal jump" prediction is one of the central results 
of the KT RG theory and has been verified to an impressive degree by 
measurements on "He films ~5~ as well as by numerical work on XY-type 
models (see, e.g., refs. 24 and 25 and references therein) and CG-type 
models. ~26~ Quite convincing evidence for KT universal behavior has also 
been obtained for artificial superconductor networks, more specifically 
weakly coupled Josephson junction arrays (JJAs) 1271 and wire networks, c281 
which are both well described by XY-type models (see Section 2). 

The situation for continuous superconducting films appears to be less 
clear. Experiments on high-To films (YBCO c~~ and dirty conventional 
films (AI, 18~ In/InO ~9~) provide rather good evidence for a discontinuous 
jump of the helicity modulus /~ at the transition; however, in both cases 
they seem to point to slightly larger values of this jump. (We note that in 
one case ~~ the authors explain the observed behavior of ~" in a completely 
different way, namely by percolation effects due to the granularity of the 
film.) 

Unfortunately, in the literature apparently no numerical results are 
available on the critical behavior of the 2D GL model. Usually, the 2D GL 
model is assumed ~7'~5~ to have the same universal properties as the XY 
and CG models, since small-amplitude fluctuations of the order parameter 
~u have been shown ~zg~ r o b e  irrelevant in the RG sense. These fluctuations 
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are then neglected altogether, and one is left with a gas of GL vortices 
(termed "Ginzburg-Landau Coulomb gas" (GLCG) in the literaturet3~ 
we will call it the "bare" GLCG, since fluctuations are not yet included) 
whose interaction is logarithmic at large distances and cut off roughly at 
the GL correlation length 4. However, it is easily seen (see Section 2.1 ) that 
right at the expected vortex unbinding transition, the amplitude fluctua- 
tions can no longer be considered as weak and thus may well change the 
critical behavior. 

A further, conceptual problem of the "bare" GLCG is that the phase 
space division A of a vortex is not well defined without additional 
arguments, tjg~ To get a rough idea of the size of A, one may argue that 
neglecting fluctuations at length scales <4  corresponds to a lattice 
regularization with lattice spacing ~4. Consequently, the vortex phase 
space division is expected to be ~r since a vortex can be located at any 
of the plaquettes of the lattice. A more systematic approach to this question 
will be discussed at the end of this paper, in Section 4.4. 

The above qualitative argument implicitly assumes that the only length 
scale which enters the problem is 4; in particular the zCG(TCG) line should 
be independent of any microscopic cutoff length for fluctuations. In contrast, 
in the present paper we study precisely the influence of small-wavelength 
( < r  fluctuations on the transition. In doing so, we still assume that 
a description of the transition in terms of an effective interacting vortex 
gas is justified. We then take all thermal fluctuations systematically into 
account by a perturbative elimination of all degrees of freedom except the 
vortex positions. Our results will indicate that these fluctuations strongly 
increase the density of vortices at the transition or, in other words, they 
shift up the zCG(T c~) line. 

Already KT in their original paper ~ 14j noted that their approximations 
are justified only when the vortex system is dilute enough at the transition, 

CG CG CG i.e., when z v = z  (T V ) is small enough. Outside the region of small .co  
universality will hold only as far as the RG flow remains KT-like in a 
topological sense. On the other hand, Minnhagen 131J (see also refs. 19, 
32, and 33) investigated the whole phase diagram of the 2D CG model by 
an extension to larger z cG of the KT-Young self-consistent screening 
procedure ~4"34~ of deriving the RG equations. Minnhagen's modified RG 
equations are nonholonomous integrodifferential equations which in the 
small-z cG limit reduce to the KT equations. Moreover, for small enough 
z cG his corrections to the latter are irrelevant in the RG sense, i.e., 
Minnhagen's equations reproduce the same universal properties in this 
region. At larger values of z cG, however, his equations predict a first- 
order transition line which ends at some critical point (z~CC, T~CG)~ 
(0.029, 0.204). The KT line joins the first-order line smoothly from below 
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at some point _CG TCG'I,.~ (-,, , _ ,  , ~  (0.054, 0.144) (Fig. 1, qualitatively adapted 
from ref. 33). The superfluid transition is KT-like up to this point and first- 
order further above. 

The first-order part probably may still be interpreted as a vortex 
unbinding transition, which in contrast to the KT transition involves the 
simultaneous dissociation of a finite fraction of all bound vortex pairs in 
the system. Its characteristics are nonuniversal; for instance, the jump of 
the above-mentioned quantity [~o(T cG) TC~] -~ depends on TcG in the 
first-order part of the transition, and it is larger than the KT value 4. 

In Fig. 1, we have included the zCG(T cG) lines representing the X Y  
model and the "bare" GLCG,  where for the latter we used the functional 
form proposed in ref. 35 (see also Section 2.3). The X Y  line definitely lies 
in the KT regime; there is thus no contradiction between the Minnhagen 
theory and the numerically well established fact (see references in refs. 24 
and 25) that the X Y  model displays the universal properties of a KT trans- 
ition. The G L C G  line intersects both the KT and the first-order lines, but 
the superfluid transition is still KT-like. Our aim here is to argue that 
inclusion of fluctuations may shift the zCG(T cG) line even further up in the 
first-order regime. 

However, the Minnhagen scenario must still be considered as some- 
what speculative. Some effort has been made (see refs. 25 and 36 and 
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Fig. 1. Plot of Minnhagen's generic CG phase diagram/~ 33} Also shown are the zCG(T c~) 
relations [Eq. (18)] for the X Y  and GLCG models, using the parameters of Table I. In both 
cases, a KT-like vortex unbinding transition is predicted. 
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references therein) to decide whether a first-order transition exists in a 
modified X Y  model with a "truncated" cosine interaction between 
neighboring phase angles [which presumably also corresponds to a higher 
zCG(T cC) line than the X Y  one in Fig. 1 1, but the conclusions obtained by 
different authors are contradictory. Perhaps the strongest case in favor of 
the Minnhagen scenario could be made by Jonsson et aL t2s) By a finite-size 
scaling analysis, they established the existence of a critical point above the 
KT line, which they identify with (z ccG,T~cG). 

In summary, in this paper we try to treat the mapping of the 2D GL 
model on the corresponding interacting vortex gas in a somewhat more 
complete and systematic fashion than has been done so far in the literature. 
Thereby we find that fluctuations strongly enhance the vortex fugacity at 
the transition, which may drive the transition first-order, provided the 
Minnhagen scenario is correct. 

The paper is organized as follows: in Section 2, we start with some 
general remarks about the GL description of superconducting films and 
networks, and also define our modified notion of the "Ginzburg-Landau 
vortex gas" (GLVG). The details of the main calculation are contained in 
Sections 3 and 4. The idea is to first investigate some kind of"saddle point" 
configuration of the field for given vortex positions (Section 3), which 
corresponds roughly to the "bare" GLCG discussed in the literature. In a 
second step, we include thermal fluctuations around this configuration in a 
Gaussian approximation (Section 4) and derive, as our central result, the 
zCG(T cG) relation for the GLVG. Section 5 contains a short summary and 
conclusions. 

2. THE EFFECTIVE G I N Z B U R G - L A N D A U  VORTEX GAS 

2.1. Ginzburg-Landau Description of Superconduct ing Films 

The starting point of this paper is the GL free energy functional of a 
complex order parameter field ~ in 2D, 

J t ~  c t l ~ [ 2 + ~ l ~ [ 4 + T I V ~ [  2 (1) 

A physical system can be considered as 2D if the thickness of the film is 
smaller than some minimum wavelength of ~ fluctuations, such that varia- 
tions of ~ perpendicularly to the plane are negligible. Note that we also 
omitted any coupling to the magnetic vector potential A, i.e., (1) actually 
describes a neutral superfluid. Nevertheless, as argued in the introduction, 
such a local free energy is probably more appropriate for superconducting 
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films than for 4He films. At the end of this section, we will indicate under 
which circumstaces the omission of a coupling to A can be justified. 

Y is used to define statistical mechanical quantities like the partition 
sum 

Z oc I ~tte--'re[V']lkBT (2) 

The coefficients ct, fl, y in o~ are in general temperature-dependent quan- 
tities: as usual, we assume that ct vanishes at some "mean-field" critical 
temperature /'co, and that ~ < 0  for T</ ' co .  Furthermore, for (2) to be 
defined, necessarily fl, y > 0. There is some freedom in the interpretation of 
the parameters ct, fl, y and the order parameter field ~P; usually, one 
chooses ), = h'-/2m,, where m,  is the effective in-plane mass of the carriers 
(electrons or holes) and interprets 17-'12 as the local density of carriers in 
the condensate. If we disregard boundaries, (1) assumes its minimum for 
the homogeneous field configuration g ~  = (Icq//3)'/2 and for any other con- 
figuration which differs from ~ u  by an arbitrary, spatially constant phase 
factor. 

For later convenience and clarity we introduce a dimensionless order 
parameter field ~b := (/~/1~1)'/2 ~ normalized such that ~ _= 1. With 

2y Ice I / , y ~ , / 2  
K :=flkBT' r := \lctlJ/--/ (3) 

and 

(4) 

we can then rewrite the exponent of (2) as 

kBT 2 H I 0 ]  + const (5) 

where const stands for a ~,-independent term which is irrelevant for the 
thermodynamics. ~ is the GL "correlation" length which measures the 
length scale on which ~ relaxes to ~b~ = 1 away from a perturbation. We 
will see later that it is also the correlation length for thermal fluctuations 
of the amplitude [~bl. Here K measures the stiffness of the ~ field over tem- 
perature and its inverse will later play the role of an effective statistical 
mechanical temperature. Note that I/K and ~ both diverge as T approaches 
T~o from below, since I~1--' 0. Both effects tend to enhance fluctuations, so 
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if the KT transition is not preceded by some other transition to a disor- 
dered high-temperature phase, there must be a vortex unbinding transition 
at some temperature Tv below Too. 

Expression (4) looks as if ~ were the only length scale in the problem 
and could be eliminated by a simple rescaling of all lengths, i.e., of r. This 
is in fact the case in usual GL theory, t~6~ However, in order to obtain well- 
defined, finite results for statistical mechanical quantities like the partition 
sum (2) or ~k correlation functions, we have to limit the number of degrees 
of freedom by a UV regularization which introduces a second length scale. 
For definiteness, we may, for instance, put the model (4) on a square lattice 
with spacing a, 

a 2 

n E ~ ]  = ~ - ~  (1 - IGI2)2  + ~ I ~ , -  @~12 (6) 
( i j )  

where Zw> denotes a sum over all pairs of nearest neighbor sites. Alter- 
natively, we may supplement the continuum version (4) by the corre- 
sponding momentum cutoff prescription {i.e., all momenta in the Fourier 
representation of (4) restricted to the first Brillouin zone [-n/a ,  z/a]2}. 
We will assume that both prescriptions are essentially equivalent and use 
them in parallel. 

Expression (6) clearly shows that ~/a is a second (besides K) dimen- 
sionless parameter which enters the model. In the limit ~ ,~ a, the first term 
in (6) suppresses amplitude fluctuations of the order parameter away from 
the value I~,1 = 1 and (6) reduces to the X Y  Hamiltonian, 

Hxr[$]= ~ le~~176 ~ [1-cos(O,-Oj)] 
(0") ( a )  

(7) 

where 0; is the phase of ~b~. In this respect, the X Y  model is the "phase- 
only" r ~ 0 limit of the GL model. As mentioned in the introduction, its 
predictions agree well with measurements on Josephson junction arrays 
(JJAs) and superconducting wire networks. From our point of view, the 
reason for this success is that in these artificial networks the spacing of the 
underlying lattices provides a macroscopic cutoff length a which can be 
tuned independently of ~. Weakly coupled networks, ~'-7'281 which are 
preferred experimentally since their transition temperature is well separated 
from the bulk transition, then always lie in the regime r ,~ a. Note that in 
a model of type (6) for weakly coupled JJAs, ~ is not equal to the bulk GL 
correlation length, but is usually much smaller (as a matter of fact, ~2/a2 
is essentially proportional to the Josephson coupling energy between two 
grains over the condensate energy of a grain). Consequently, there is no 
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contradiction to the fact that usually a is smaller than the bulk r in these 
systems. 

The main points we want to stress now are the following: 

1. In continuous superconducting films (as opposed to networks), 
is not independent of a. In fact, it always obeys the inequality 
r  

2. If r >a ,  thermal amplitude fluctuations are quite strong close to 
the transition. 

In the remainder of this paper, we will then analyze in detail the effect 
of these fluctuations and discuss in which way they may change the critical 
behavior. 

In order to demonstrate point 2, we disregard for the moment the 
phase degrees of freedom and estimate the local fluctuations of the 
amplitude in a Gaussian approximation. An expansion of the potential 
term in the Hamiltonian (4) shows that amplitude fluctuations 3 I~'1 = 
I ~ l -  1 have a "mass" 2/r 2. Therefore their mean square value at some 
"temperature" 1/K may be estimated as 

<(61r 
<1r = 

1 f"/" dZk 1 
~ :_ .]. (~-)+ 2/r ~ + k" 

,. 1 14"+/"" d(k')  l ( +~+) 
+ 8 x K  o 2/r  1+2=  (8) 

where in the second line we just have approximated the quadratic Brillouin 
zone by a circular one of the same area (2g/a) 2. At the presumed vortex 
unbinding transition, one expects the dimensionless "inverse temperature" 
K to be roughly of the order of 1, which implies that for r > a  the IqJl fluc- 
tuations are of the same order of magnitude as its expectation value 
squared, ( [~b[ ) z .~ 1. 

To show that for superconducting films always r ~> a (point 1 above) 
we first have to understand the meaning of the cutoff a in this context. In 
fact, the Gor'kov derivation (see ref. 37, and also the reviews in refs. 16) of 
the GL functional (I)  from BCS theory does not immediately yield a local 
form like (1), but involves integral kernels whose range plays the role of 
the cutoff a. Both a and the GL correlation length ~ can be calculated in 
this framework and one obtains roughly 

a [X(1 - T/Tr t/2 (9) 
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where X ~ (1 + h/21rka Tz)- ' is a number < 1 for dirty superconductors and 
= 1 in the clean limit/~61 An immediate consequence of (9) is the validity 
of the asserted relation ~ > a at any temperature T. The ratio {/a diverges 
as T approaches T~o from below; note that one usually even assumes ~ >> a 
to justify a local GL description. From BCS theory we can also estimate 
the value of r in the interesting region close to the presumed vortex 
unbinding transition: using (3), (9), one can show that 

~_~( hZn2o ~'/z 210(n~o[t~-Z]m,,)'/z 
a \2mflkBTK j \ ~ ~  n--~u (10) 

where n2D [~-2]  is the number of carriers in the film per ~2 and m H their 
in-plane effective mass. At the transition ( T =  Tv), we assume again K ~  1 
and (10) yields a ~(Tv), which is appreciably larger than a unless the film 
has at the same time a high T~o, low carrier density n2o, and high in-plane 
carrier mass roll (note that these conditions may be realizable in films of 
high-T c material whose thickness is a few unit cells). 

The last point we want to address briefly in this subsection is the omis- 
sion of a vector potential term in (1). A priori, such a coupling is important 
also in the absence of an external magnetic field, since thermal @ fluctua- 
tions are accompanied by local supercurrents and therefore generate local 
magnetic fields. 

The argument for the conventional scenario (no fluctuations except 
vortices) is well known 16'7~ and goes as follows. It was shown by Pearl ~ 
that the logarithmic vortex-vortex interaction in superconducting films is 
magnetically screened at a length 

22~. (11) 
A s -  d 

where )-L is the bulk London penetration depth and d the film thickness. 
For this reason, KT originally argued that a vortex unbinding transition 
should not occur in superconducting films since the logarithmic interaction 
at arbitrarily large distances is essential for the mechanism. However, it 
was noticed later 16'7~ that for small d and sufficiently close to /'co (note that 
2L diverges as T-+ T~o), As can become of the order of millimeters, i.e., 
comparable to typical sample sizes. Screening then should not wash out the 
transition to a larger extent than effects of finite system size and is therefore 
disregarded. The above authors restricted their argument to dirty films 
with a large 2 L ( T = 0 ) ,  but one can easily convince oneself using the GL 
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relationship 2[=h2cZfl/32rt Loq ye 2 that for any film, independent of its 
specifications, 

(he~e) 2 1.2 cm 
A ~ -  - -  ,~ (12) 

8nKkB T T [ K ] . K  

At T =  Tv, As should thus always be roughly of the order of 1 mm. 
In this paper, we consider, in addition to vortices, the effect of 

amplitude and phase modulations, which are of course also accompanied 
by supercurrents. Screening effects lead in this case to an additional "mass" 
term ~2/A~ for fluctuations; in particular, the massless phase (Goldstone) 
modes of the neutral superfluid become slightly massive. However, since 
our calculations will involve fluctuations of wavelength < ~ only and since 
we can assume ~,~A s because of (12), we believe that we may disregard 
this effect, too. A more detailed discussion of this assumption may be inter- 
esting, but we will not further enter this question here. 

2.2. Elimination of Shor t -Wavelength  Fluctuations: 
Mapping on the Two-Dimensional  Coulomb Gas 

In this section, we outline the basic ideas of our approach. In par- 
ticular, we try to clarify how the mapping of the 2DGL model at finite T 
on its associated vortex gas can be carried out in a systematic way. 

Our aim is to study the presumed vortex unbinding transition which 
should show up in thermodynamic quantities like the partition sum (2). To 
this end we try to transform (2) into the statistical mechanical partition 
sum of an interacting vortex gas, i.e., we try to eliminate any degrees of 
freedom except the vortex positions. 

On the technical level, the main step is to introduce a new lattice 
cutoff 6 > a and to define an effective action SI-q;o] on a coarser lattice with 
constant ~ (i.e., of the long-wavelength field components q;o) by integrating 
out the short-wavelength components ~b~ which contain wave numbers 
between rt/6 and it~a: 

Z oc fo ~ ~  exp('~[~'~ (13) 
< k < n l~  

) exp(S[~bo]) := - ~ ,  exp - ~ -H[~Oo+~, ]  (14) 
I~ < k < n la  

If 6 is chosen large enough (6 > a, ~) then we expect (13) to be dominated 
by "saddle point" configurations ~b o of H with vortices at given positions 
R, (and with associated vorticities m~) as constraints. The effective phase 
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space of the resulting vortex gas will be formed by the plaquettes (with area 
~2) of the coarser lattice, which is important for the definition of the vortex 
entropy and thus for the thermodynamics. Nonsingular phase fluctuations 
("spin waves") of wave numbers k < n/6 are also still contained in (13), but 
they decouple from the vortices as they do in the pure X Y  model and play 
no role in the transition, so we will disregard them (see also Section 4.2). 

On the other hand, if ~ is not much larger than max(a, ~), then the 
effective action S i l o ]  may be determined to a reasonable approximation 
by a Gaussian approximation to the functional integral in (14). Then 
may be thought of as the smallest length scale on which vortices are well- 
distinguished objects. In Section 4.2 we will realize the infrared cutoff n/6 
by a mass 2/~ 2 of the field ~ ("soft" cutoff), where ~ is the GL correlation 
length. Both quantities will then turn out to be related by ~2= a2+ 2n~2, 
which is in good agreement with our general discussion in the introduction 
and satisfies the above criteria. 

Disregarding phase fluctuations of wave numbers k < n / 6  as stated 
above, we can express the vortex part of (13) as 

Z - 1 m f d2R,~ 
v-Z~-~,  ,~) (i=I~-I ' j ~ 2 ]  exp(g[~'~oN']) (15) 

where the determination of Sl-~,~o N)] as a function of the Ri, rni from (14) 
is the main technical task in this paper. N is the total number of vortices 
(of mutual separation >ti) in the system. We will later see that thermo- 
dynamically [i.e., in the partition sum (15)] only vorticities m~= +1 are 
important and, moreover, below Tv only "neutral" vortex configurations 
(obeying ~ i  mi = 0). 

As we will see in Section 4.3, for vortex distances much larger than fi, 
S[~/J~o N)] has an asymptotic behavior of the form 

S[0~o N)] ~ T1---~ msmjln - - + N / ~  cG (16) 
--i<j 

i.e., it behaves as a neutral two-dimensional Coulomb gas (2DCG). The 
latter is generally defined by a partition sum of the form (~9) 

1 ( ~  IR i -  RjI ) 
x exp TC6 rnirnjln + +N/I cG (17) 

--i<j Rc 

where ~ , , , /  now is a restricted sum over all neutral configurations of N 
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vortices with m i =  +__1. Here ,4 is the "phase space division" of a CG 
charge, T cG is the dimensionless CG temperature, and - 2 #  cG may be 
interpreted as the creation energy of a neutral pair at distance R~. Note 
that in (17) the interaction involves In+ x :=max(0,  In x), i.e., it is cut off 
at smaller distances than Re. Such a cutoff is essential for (17) to be well 
defined, but it can be realized in different ways. (19J It is easy to see that 
despite the appearance of the four parameters T c~, pCG, ,4, and Rc, (17) 
actually depends only on T cG and on the "fugacity" 

zC c = R___~ e,,CG/rCC (18) 
"4 

of the CG charges. The values which were used to draw the 2CG(TCG) lines 
in Fig. 1 are taken from refs. 21 ( X Y  model) and 19 and 35 ("bare" 
GLCG),  and are collected in Table I. For the effective G L C G  defined by 
(15), (16) we have by definition A = f i  2, but the short-distance cutoff is 
not yet specified in (16). We assume here R ~ ,  such that simply zCG= 
exp(pCG/TCG). This is reasonable since ~ is of the order of the vortex core 
size. To demonstrate that the results for zCG(T co) are not too sensitive to 
the choice of R~ (nor presumably to the precise cutoff procedure), we have 
changed the values of the cutoff distance R~ in the case of the X Y  model 
and the "bare" G L C G  by factors of 2 and 1/2. Note that there is an accom- 
panying shift of peG: the change to some other cutoff r~ in (17) means that 
we have to replace In+(R/R~)  ~ ln+(R/R'c)  + In(R'JRr which (using the 
charge neutrality condition) leads to 

(R,c~2_ ~/2rcc 
z ~ z ' = z  (19) 

\ R c /  

The results are shown in Fig. 2 and present no essential changes 
compared to Fig. 1; the effects with which we will be concerned later are 
much more pronounced. 

Table I. Effective CG Parameters for the X Y  Model  
and for the "'Bare" GLCG 

Model R c A pcc 

XY 12~ a a 2 -0.809 
GLCG 13~ 2.24~ 16.4~ 2 -0.390 
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Fig. 2. Same as Fig. 1, but with several different values of the cutoff Re of the vortex-vortex 
interaction [see Eq. (17)]. The qualitative properties of the vortex unbinding transition of the 
X Y  and GLCG models are not changed. 

3. THE "SADDLE POINT" CONFIGURATION 

As we argued in Section 2.2, the long-wavelength componen t  ~O o of the 
field is essentially of the form of a "saddle point"  configuration of H for 
given vortex positions R i and vorticities m~. So our  first step will be a 
detailed investigation of these configurations and in particular of their 
energies H[~ko]. In Section 4 we will then proceed to calculate the effective 
action S[q~o] of (14), by adding corrections due to thermal fluctuations 
a round these saddle points. 

Since in this section we are not considering fluctuations, we can work 
in the cont inuum limit a--* 0 [such that ~ is the only length scale of the 
Hamil tonian  (4)]  without encountering divergences. Only in Section 3.5 
will we reintroduce a discrete lattice and discuss the way in which our 
results then are modified. 

3.1. Separat ion of  the  V o r t e x  Degrees of Freedom 

In order to see how vortices, i.e., singularities of the phase with finite 
winding numbers  ("vorticities"), can be imposed as constraints on the field 
@, we write the latter in terms of real fields p, 0 ("ampli tude" and "phase"),  

~b = p e  ~~ (20) 
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and express the Hamiltonian (4) in terms of p, 0: 

[" ~'2 1 _ + p2 iV012 } H[p,O]=jdr(~-~(1  p2)2 [Vp12+ (21) 

The phase gradient can be split into its longitudinal and transverse parts, 

V 0  = V 9  - [] x V ~  ( 2 2 )  

where n is the unit vector normal to the plane. ,9 is a nonsingular phase 
field representing the "spin waves" and �9 is a "vortex potential" which 
satisfies the Poisson equation 

V2~(r) = -2re ~] mi6(r -Ri)  (23) 
i 

with pointlike integer "charges" (vorticities) me at the positions R~, corre- 
sponding to the singularities of the phase field 0 (0 changes by 2rome upon 
going counterclockwise around R~). q0 is determined by (23) only up to a 
harmonic function; any harmonic contribution can, however, be absorbed 
into oq, so that we may choose the particular solution 

�9 (r) = - ~  mi in Ir - Ri._.....~l (24) 
, r 

which finally renders the splitting (22) unique. In order to make the argu- 
ment of the logarithm in (24) dimensionless we have introduced the only 
length scale ~ of the problem. Note, however, that for a "neutral" vortex 
configuration (Y~ern;= 0), r does not depend on r The physical content 
of (22), (24) is that we have separated the vortex degrees of freedom 
(expressed by their positions Re and vorticities rni) from the remaining non- 
singular phase configuration 9. 

3.2. The Vortex  Core Structure  (One-Vor tex  Problem) 

Besides the phase field which defines the vortices, our Hamiltonian 
contains the amplitude field p, which is strongly coupled to 0 close to the 
vortex centers Ri: far away from the centers (V0 small) it is expected to 
have values p ~ 1, whereas it vanishes right at the vortex centers, p(Ri) = 0, 
because otherwise the "vortex core" energies would diverge logarithmically 
in the continuum limit. We call vortex core the regions of size .~ ~ around 
Ri where p significantly differs from 1. Since the structure of the core 
regions is essential for the following, we will investigate here in detail a 



376 Bormann and Beck 

single isolated vortex of vorticity m centered at the origin. This subsection 
is sort of a summary  of results taken from the literature which are relevant 
in our  context. 

Because of the isotropy of the problem we employ polar  coordinates 
r, ~b; in the saddle-point  configuration of the Hamil tonian  (21), the phase 
field is then (up to an additive constant  which we choose equal to zero) 
given by 

O,,,(r, ~b) = m(b (25) 

and the ampli tude p,,, is a function of r alone. Inserted in (21), this yields 
a reduced Hamil tonian  of the one-vortex problem, 

Hm[Pm ] f d r 2 r t r { + ( 1  ~ 2  (dP,,,~2+ m2 2}  
= --P"') + \  dr J -;T_P,,, (26) 

Its min imum solution is determined by a vanishing functional derivative 
with respect to p, , ,  

1 6H. ,  dZp., 1 dp.,  m 2 1 
O= - 4 t o "  6 p . , ( r ) -  dr ~ 4 r dr r z P,,,+ ~5 p,,,(l - p~,,) (27) 

together with the boundary  conditions 

p,,,(O) = O, p,.(r) -* 1 for r ~ ~ (28) 

The solution p,,,(r) rises monotonical ly  from 0 at r =  0 to 1 at r-- ,  ~ .  To  
determine the asymptot ic  behavior  of p,,, at small and large r, one may  
proceed as follows: 

1. r , ~ :  here p m ( r ) a l ,  so we linearize ( 2 7 ) i n  p., and insert an 
ansatz p, ,(r)~c, , , (r /~)  ~ with c t > 0  and c,,, a numerical constant,  which 
yields 

d2p,. l dp,,, m 2 r ~- 2 
0 ~ --'7"5- -t p, . '~c , , , (a2--m 2 ) (29) 

Y dr r 2 a t -  

Thus a = lml, and c,, is a constant  of order 1 which has to be determined 
numerically from the full solution of (27), (28). For  m = 1, ref. 30 gives 

f r d 2 ) c2 
, ,=l  0.108, i.e., c , ,=~=0 .582  (30) lim ~,~nr ~ p , ,=  l = _ 

r ~ O  
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2. r>>~: here u ( r ) : = l - p . , ( r ) ~ l ,  so we linearize (27) in u and 
insert an ansatz u(r).-, c~,,(r/~) # with/~ < 0: 

d2u 1 du m 2 2 
O ~ ~ r Z + r ~ r + ~ - ( 1 - u ) - ~ u  

- z m 2 r B 
~C'm(fl2--m2)[-~ -+--2c',r 2 ~+2 (31) 

For  r---* ~ ,  the last two terms are the dominant  ones, such that  fl = - 2  
and C'm = m2/2. 

In conclusion, the asymptot ic  behavior  of p,.  is given by 

(c(r/~) I'l for r ,~ r  
P"(r)"'(1-1m2(~/r)2" for r>>~ Cm= 1 = 0 . 5 8 2  (32) 

Sketches of Pm for m = l, 2 are given in ref. 30. For later use we note that 
the first line of (32) together with 0m = m~ implies that close to the vortex 
center (r ~ ~) the field ~,, = p,.,,e i~ has the simple power form 

fc.,(:/O for m > 0  
~ ] m ( : ) ~ ( f m ( : * / ~ ) [ l ~ l m  for m < 0  

(33) 

where : = re i* is a complex notat ion for the coordinate  in the plane. Note  
in particular that  the complex field is perfectly smooth  even in the center 
of a vortex; a singularity only appears  when one looks at the phase 
separately. 

Now consider the different contr ibut ions to the total energy H, . ,  (26). 
Since for a circle-shaped system Hm diverges with the radius r,. as 
~ 2 n m  2 In r c, we split off this size-dependent term: 

( E3(m) ' (34) H.,[p,.] ... 2n \m2El(m) + E2(m) + 

for r,. >> ~, where 

El(m ) := lim drP2"-ln - dr In (35) 
rc~ ~ r 

E2(m) :=fs  drr\---~-r/ (36) 

I :  r E3(m) := d r ~ ( 1 - p ~ )  2 (37) 

The second expression for El(m) follows by partial  integration. 

822/76/I-2-26 
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Table II. 

Bormann and Beck 

Numerical Values fo r  the  E Parameters 
o f  the  One-Vor tex  Prob lem" 

m El E2 E3 

1 -0 .806  0.279 1 
2 - -  0.416 4 

Equations (35)-(37). Taken from refs. 39 and 30. See explanation in text. 

E3(m) can be calculated analytically by the following trick (we follow 
an idea of ref. 30): let p,, be the solution of (27), (28) and let p ..... (r) := 
p,,(r/c~). Then the energy H,,[p ..... ] is minimum for ~ =  1. To yield finite 
results it must again be regularized by a finite system radius r,. >> ~. After 
a variable change r ~-* ~r it reads 

i~rr { ~2 (dp,.~2+m2} 
P"')-+\ dr J "-;'s (38) H,,,[pm.,]= dr2xr ~ - 5 ( 1 -  2 , 

The minimum condition then implies that for r, ~> 

1 dH, .  2 , f~c 2 , ,  , 
0 = 2 n  d~ ==l~m pro(r,.)'- d r ~ ( l - p , , , F ~ m - - E 3 ( m )  (39) 

i.e., 

E 3 ( m ) = m  2 ( 4 0 )  

Once the system (27), (28) is numerically solved for a given m, the numbers 
E~(m) and E2(m) can also be evaluated. Reference 39 supplies a value 
E2(1) = 0.279. This value is confirmed by ref. 30, which furthermore sup- 
plies E2(2)/4 + E3(2)/8 =0.604, i.e., E2(2)=0.416 and E t ( 1 ) = - i n  2.24= 
-0.806. The mentioned values of Ei(m) are summarized in Table II. 

3.3. Interact ion of Vortices at Large Distances 

Let us now calculate the interaction energy of a given vortex con- 
figuration defined by its potential q~, (24), taking the core structure of the 
vortices into account. The interesting term in the Hamiltonian (21) is the 
third one, which couples p and 0. Inserting (22), we obtain 
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f d2r p2 IVOI-' = f d2r p2 [V~q _ n • Vail 2 

= f d2r p2{ iVoa 12 _ 2 Voq- (n x V ~ )  + IV,~l 2 } 

f d2r {p2 IV~I2- 2oan. (Vp 2 x V~) 

- -  ~2~(p 2 V2(iB q--Vp 2 �9 V~jB) } (41) 

The boundary terms appearing in the partial integration which leads to the 
third line of (41) would yield a positive contribution to the total energy 
which diverges logarithmically with the system size unless the vortex con- 
figuration is neutral ( ~ i m i = 0 ) ,  in which case they vanish. Nonneutral 
configurations are therefore thermodynamically suppressed (at least at low 
temperatures), and we consider here only neutral ones, for which (41) is 
correct. 

To find the saddle point field configuration for given vortices we now 
have to minimize (21) [with (41) inserted] with respect to p and & 
Because of (23) and p (RA=0 the p2V2~ term vanishes identically. In 
general, the other terms interact in a complicated manner. However, we are 
interested at vortices at distances >~ since we will treat the short-range 
fluctuations by other means in Section 4. Let us for simplicity assume that 
the smallest distance IRi-Rj l  between any two vortices in the given con- 
figuration is R >> ~ and look for the leading terms in an expansion in ~/R. 
The vortex cores are now well separated and in any of them p is expected 
to be given by the isotropic one-vortex solution of Section 3.2 plus a 
correction of the order (~(~/R) (a justification will be given below). 
Together with (24) and by symmetry arguments this implies that Vp 2 x V~ 
is of order (P(~/R), which in turn gives [see (41)] a saddle point configura- 
tion of oa of order C(~/R). Therefore (41) yields 

d2r p2 IV012 = - I  d2r ~(Vqb .Vp 2) + (P(r 

=_~mimjfd2r(r_Rj).Vp2 ~ ( ~ 2 )  
i.i i r_Rj l  ~ In +(P ~_, 

(42) 

In the second line, simply (24) has been inserted. The important contribu- 
tions to the integral in (42) stem from a region of size d~(r around Rj, the 
rest is again 0(~2/R2). To calculate this integral, we may then assume that 
Rj = 0 and replace p by the one-vortex solution with vorticity mj centered 
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at the origin, P,n, (see Section 3.2). We further have to distinguish two 
cases: 

1. i ~ j ;  i.e., R~= R j - R j = :  AR, IARI/> R. In this case the logarithm 
in (42) is dominated by a constant term In(I,JRI/~.) and contains further 
terms (9(~/R) which couple p in the core of vortex j to the other vortices. 
This leads to an a posteriori justification of the above assumption that the 
corrections to the one-vortex solution p,,, around Rj are ~(~/R). Again 
invoking symmetry arguments we finally obtain 

I d 2 r ~ l n  [ r -AR[  IARIf ~ dP2m~ 
Irl ~ 27~1n ~ Jo dr---~-r + 

since p,,~(r) ---, 1 for r --, ~ .  

= 2 n l n  +d~ ~ (43) 

2. i = j; i.e., R; = Rj = 0. This gives the strong "self-interaction" of the 
core amplitude of a vortex with its own phase configuration, 

~ .  dpL, r r 
r" VP2 In ~-~= 2rt ~o ar --~r tn ~ + d~ (~-i) 

= -2rtEl(m) + O(~2/R 2) (44) 

We can now insert these results into (42), add the terms of (21) which 
contain p only, and express everything in terms of one-vortex quantities. So 
if ~bo= ffo({R~, m;}) is the minimum-energy field configuration with given 
vortices of vorticities m,. at positions R~, its energy is given by 

where 

H I , o ] =  - a n  ~ m~mjln IR,-Rjl 4 n ~ / a c L ( m . ) + (  9 ~-i (45) 
i < j  ~ i 

m -  
-- 2pGL(m) = m2El(m) + E2(m) + - ~  (46) 

To zeroth order in C/R, this is just the Hamiltonian of a neutral two-dimen- 
sional Coulomb gas of integer charges m i whose core energy (or chemical 
potential /~CL) depend on m;. Note that in particular (45) contains two- 
body interactions only. We will later absorb the overall factor 4n in the 
effective Coulomb gas temperature. 

For later use we also calculate the quantity r S d2r ( 1 -  I~ol 2) by 
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relating it to H[@o] in the following way: since @o is the minimum-energy 
field configuration for a given vortex configuration {Ri, mi} as boundary 
conditions, the functional derivative 6H/5~,o(r) vanishes nowhere in space 
except at the vortex centers r = Ri. On the other hand, @o(r) itself has zeros 
precisely at the vortex centers, such that (with @o = P e~~ 

5H 2 IV012} (47) 
' 

~sP (1-P2)+IVpl +p2 

Now after adding ~-'-S d2r ( 1 -  I~Ool 2) on both sides, the r.h.s, becomes 
almost identical to H[~ko] apart from an additional factor of 2 in front of 
the E 3 integral [see (37)-I. In analogy to (45) we therefore obtain 

f d2r (1 - I~o l  2) = -a r t  ~ mimj in IR i -  Rjl 
r ,<j r 

= HI@o] + rt ~,, rn~ + 0(r 2) (48) 
i 

Identity (48) will be of central importance in Section 4 for the mapping of 
the full problem including fluctuations on a Coulomb gas. 

At low temperatures T <  Tv, the partition sum (15) will be dominated 
by configurations made out of bound vortex pairs of opposite vorticity. 
Furthermore, higher vorticities Iml i> 2 have a much lower statistical weight 
than Iml = 1 for pair distances R >> ~ because of their higher core energy 
and stronger binding [see (45)]. We therefore assume that they play no 
essential role in the vortex unbinding transition and restrict ourselves in the 
following to configurations with m~= +1. 

3.4. The Functional Derivative 6H/6tPo 

The field configuration @o which we studied in Section 3.3 is no real 
saddle point of H since it is subject to the vortex boundary conditions 
defined by {Ri, m,}. However, clearly 6H/&bo(r,)=O for r~  {R,}, so we 
expect something like 5H/5@o(r~) oc 5 ( r - R g )  for r in the vicinity of Ri. 
Since the functioffal derivative 5H/6@o determines the linear energy of fluc- 
tuations away from ~bo (see Section 4), we will study it here in some detail. 
We consider again a neutral vortex configuration with minimum vortex 
distance R ~> 4. Let us look at a neighborhood of the position R; of the ith 
vortex and consider the particular fluctuation 6@o generated by moving 
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vortex i by an infinitesimal vector iiRi. Then (33) implies that for 
I r -  R;I '~ ~ (assume for simplicity that m > 0), 

I]/o(r ) ~ c,, ( ~ - - ~ )  + (9 ( ~ )  (49, 

with complex representations f, ki  for r, R~ as in (33). Consequently, 

c,, 
Ri' (50) 6~bo(r) ~ - ~,. ( F -  " m-,  

NOW (45) implies that up to terms (9(~2/R2) the total energy of the vortex 
system changes by an amount 

6HE~bo] = - F , .  6R, = -- �89 6Ri + P, 6t~* ) (51 ) 

where 

R i - Rj 
F~:=47zm~ ~ mJIR;_Rj[  2 (52) 

j ( # i )  

is the total Coulomb force on the ith vortex, which is (9(l/R). On the other 
hand, we can of course write 

/ 6H 6 + 6H 

which after insertion of (50) leads by comparison with (51) to 

" -  ' 6It  ~ P,.*6(r - Ri) + (9 (54) 
6~k0(r) 2c,, ~-- 

Note that the factor in front of the fi function is (9(~/R), which will permit 
us to neglect the corresponding terms in the perturbation expansion of 
Section 4. 

3.5. Interpolat ion to the XY Model  

For convenience, we worked from the beginning of Section 3 in the 
continuum limit a/~--* O. However, when we include fluctuations around 
the saddle-point configuration ~Oo in Section 4, we will have to impose a 
finite lattice cutoff a. We will then want to expand around a suitable saddle 
point forfinite a/~. For the fluctuation corrections of Section 4 we will take 
the discreteness into account mainly by a suitable cutoff in momentum 
space. The question addressed in this subsection is, what are the necessary 
modifications of (45), respectively (48), for finite a/~? 
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The asymptotic behavior of the vortex potential at large distances 
R >> 4, a will not be affected by the discreteness of the system. However, one 
expects an appreciable effect on vortex core energies since in the core 
regions the field ~b always varies on length scales down to the order of the 
lattice constant a. The extremest example is the X Y  or "plane rotator" 
model, which corresponds to the ~/a --* 0 limit of (6), (4) where p = I~l = t. 
x Y  vortices are known to interact at distances ,>a by a potential 
4~ ln(R/a) and to have a well-defined finite core energy 4n/~xr (which is 
approximately given by half the creation energy of a vortex pair centered 
at neighboring plaquettes of the lattice), whereas (45) would predict a 
logarithmic divergence of Pxr  with ~/a. More precisely, the energy 
calculated from (6), respectively (4), of a neutral pair at distance R ,> a, 
has the asymptotic forms 

f4n (in R -  2/~xr) for ~,~a 

V r  ~R 2 ' a (55) 
4n In - PoL} for ~,> 

where the respective chemical potentials are given by 

- 2 # x r = 7 + ~  1.617 (see ref. 21) 

1 
- 2#Gt = El ( l  ) + E2(1 ) + ~ ~ -0.027 

(56) 

Here ~=0.5772 is the Euler constant and El(l),  E2(1) are given in 
Table II. The factor in front of the logarithm in (55) is not affected by the 
lattice regularization. 

We now look for a suitable interpolation formula for V~(R) which 
correctly reproduces both limits (55). Since we require an asymptotic 
behavior V ~ ( R ) ~ 4 n  In R + c o n s t  for all 4, it should be of the form 

V~(r) ~ 4~ { ln( R/a) - 21~ xv - F( ~2/a 2) } (57) 

where F is an interpolating function with the asymptotic behavior 

F(0) = 0, F ( X ) ~ � 8 9  for X~>I (58) 

A simple realization of conditions (58)is 

F(X)  := 1 In(1 + Xe 4~cL-uxrl) .~ �89 ln(l + 26.78X) (59) 

We tried to improve this simple guess for the interpolating function F(X)  
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by fitting the first derivative F'(0) to the "true" value estimated by other 
means. However, this kind of improvement had no substantial effect on our 
final results, so we disregard it here. Finally, using expressions (57), (59), 
we can rewrite the "saddle-point" field energy (45) for vorticities mi=  +1 
in the interpolated form (for R >> ~, a) 

H[~bo]~ -4r t  ~ m,mjln IRi-Rjl 2rcN(21~xr+F(X))+(9 -~ (60) 
i<j a 

where N is the total number of vortices and X =  ~2/a2. 
Starting from the lattice analog of (47), one can work out an equiv- 

alent interpolation formula for the integral (48), which, however, leads only 
to negligible corrections. We will therefore later simply use the expression 
(48) with the interpolated H[qJo] inserted. 

4. T H E R M A L  F L U C T U A T I O N S  A R O U N D  T H E  
" S A D D L E  P O I N T "  

As we already argued in the introduction, we will identify the "saddle- 
point' field configuration ~O o with the long-wavelength components of the 
field qJ with wave numbers Ikl < n/~. Note that the latter still contain long- 
wavelength phase fluctuations which are absent in the "saddle-point" field 
configuration. However, as we will argue in Section 4.2, they are not 
important for the transition and can be disregarded. We will now calculate 
the effective action ,~[~o] [Eqs. (13), (14)] in a Gaussian approximation, 
i.e., we expand H[q% + ~ ~ ] with respect to the fluctuations r ~ up to second 
order and treat their coupling to the vortices perturbatively. 

4.1. Per tu rba t iona l  T r e a t m e n t  of  F luctuat ions  

The first step is to expand the GL functional (4) around ~o: 

H[~Oo+~O,]= d2r ~ ( 1 - 1 ~ o + ~ , l : ) 2 + l V ~ o + V ~ , l  2 

{6H 6H } =H[~Oo]+fd2r ~or +fd2rlVm,I 2 

r d2r 12 ,t,.2,t,2 +J~5{Z(Zlq%12- -1 ) l~ ' l  +wo ~,,+~'02~ ' .2} 

r dZr 
+ J ~ 5  { 2(~*~0, + r162 [ 2 + I~,14 } (61) 
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where the terms are ordered in ascending order in ~ .  In a vortex-free 
configuration we would have I~'01 =1 and the linear terms in ~O~ would 
vanish. Now write again ~O o = po e~~176 take all terms which are quadratic in 
~kt (and ~k*), replace So by 1, and collect them in some "free" fluctuation 
Hamiltonian H0. Now (61) can be rewritten as 

HEqso+~t]=HE~,o]+HoE~,]+H,[po, Oo,~t] (62) 

where 

f' t Ho[$ ,  ] = f d2r ~-~ [2 IqJ,I 2 + (e-i~176 + (eiOO~l,,)2] + IV~O,I 2 (63) 

is the free fluctuation Hamiltonian and all remaining terms are collected in 
the "perturbation" 

6H 6H . )  -,E o,0o,  ,l=f d2r 

rd 2, 
--32~-" (1 - p o ) { 4  1~,12 + (e-i~176 + (ei~ + (9(r 

(64) 

which describes the coupling of fluctuations to vortex cores and vanishes in 
a vortex-free configuration. Closer examination of (63) reveals that, locally, 
the field ~, has one massive and one massless component, the orientation 
of the local reference frame being determined by the phase Oo of the 
"saddle-point" configuration. More precisely, the real and imaginary parts 
of the "gauge-transformed" field e-i~176 correspond to massive amplitude 
fluctuations (mass 2/~ 2) and massless phase fluctuations, respectively. In 
two dimensions the real-space propagator of a massless field is infrared 
divergent, which causes serious problems in a perturbation expansion. In 
the next section, we will therefore be concerned with the infrared 
regularization of the phase fluctuations. 

4.2. Infrared Regular izat ion of  Phase Fluctuat ions 

In order to understand the physical role of long-wavelength phase 
fluctuations, we .return to the representation (21), (41) of H, where phase 
fluctuations are described by a field oa. The terms which couple to oa in (41) 
only contain wavelengths <~, so long-wavelength components oa k with 
Ikl '~ 1/~ decouple from the vortices and therefore play no role in the 
vortex unbinding transition (note that in the continuum XY limit ~ ,~ a, oa 
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decouples completely!). This leads us to assume that all components with 
Ikl < ~t/~ are irrelevant and can be disregarded. We will then treat the com- 
ponents with i t /h< Ikl <n/a perturbatively. For technical reasons it is 
convenient to realize this infrared momentum cutoff n/h in a "soft" way, by 
assigning a mass to the phase fluctuations in (63). For simplicity we choose 
this mass to be the same (=2/42 ) as for the amplitude fluctuations, such 
that (63) is replaced by the simpler, translationally invariant expression 
with isotropic mass matrix 

filo[@,]=Id2r(~b~btlz+,V~b,lz ) (65) 

(We will argue in Section 4.4 that the relation between "hard" and "soft" 
cutoffs is given by h2= a2+ 2n42.) With this modification, the Hamiltonian 
(62) now describes a system of interacting vortices together with a massive, 
harmonic field r [made up of amplitude and phase fluctuations and 
described by (65)] which is scattered by the vortex cores. In the calculation 
of the effective action (14) we may now integrate over all components qJ~k 
with Ikl < rt/a since the infrared cutoff is taken into account by the mass. 

The free propagator corresponding to Hamiltonian (65) is given by 

where 

(~b,(r)~b~,(0))_.(d[~Ol] qJ,(r)~*(0)exp(-/~o) 2 
j" didO, ] exp( - /~o)  - / ~  G~ 

(66) 

'k Go(r ) = f ,dZk, Go(k) e ik 'r  (67) 
(2~)- 

1 
G~ 2/4"- + k 2 (68) 

For later use in the perturbational expansion, we derive here some proper- 
ties of Go. The local mean square value of ~b~ is closely related to the 
fluctuations already calculated in Eq. (8), 

K ~_ (1@21 > = Go(r = 0 ) = c  j d2k 1 1 
(2rt)2 2/~2 + k2 -~ ~ ln(1 + 2nX) (69) 

where we again used the notation X = ~2/a2. More generally, one can show 
that 
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! In(1 +2reX) for r = 0 

Go(r ) ~ 1 ~-~ln for a~l r l~<~ (70) 

for Irl >a ,  ~ 

where the second line is relevant only if a < ~. The n-fold convolution of Go 
with equal arguments at the ends can be calculated in analogy to (69), 

(G'~+')(r=O)=~ ...f, Oo(1,2)Go(2,3)...Go(n+l, 1) 
- ~ + 1  

= I  d2k 
Go(k)"+' 

1 f 4"m2 d(k 2) 
~-- + k2),,+ l 4rt ~o (2/r 2 

- n 

_4~tn{(~2)  --~,~--+~)[4n 2 \ - " }  (71) 

which is never larger than its ~ ~> a limit: 

2n 

(G~ +l)(r = 0) ~< 4~nn2" (72) 

We write out the particular case n = 1 explicitly: 

r _X_____ < ~2 
Y d2r 4 1 + 2rtX "~ 8rt Go(r) 2 (73) 

4.3. D i a g r a m m a t i c s  

We will now calculate the effective action S[@o] [Eq. (14)] by 
diagrammatic perturbation theory, starting from the decomposition (62), 

(a) ----K----q 

(b) --~--q 

, , - <  (c) N v 

(d) 

co> ----)---o < 
Fig. 3. Diagrams corresponding to the interaction term H t of the Hamiltonian, Eq. (74). 
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(64), (65) of the original Hamiltonian. The propagator of the theory is 
(/(/2) Go, defined by (67), (68). Furthermore, up to d~(~) the interaction 
term - (/(/2) H~ is represented by a sum of the diagram elements shown in 
Fig. 3, with combinatoric factors of 1/2 for the symmetric diagrams (d) and 
(e). The corresponding analytic expressions read 

Kf~H (a)= - -~  j &---~ ~* 

K f  &H 

(c)= ~2 ; (1--po) [~,[ 2 (74) 

(d) = ~ 5  (l-p~)e2'~176 

(e)= (1 -pa)e-2'~176 

respectively. Omission of terms of higher order than ~)(~0~) just means 
that we are working in the Gaussian approximation. The perturbation 
series for the effective action S[~'o] [Eq. (14)] may now be expressed as 
-(K/2) H[Oo] plus the sum of the diagrams shown in Fig. 4 with the 
appropriate combinatorial factors (plus higher-order terms to be discussed 
in a moment). We calculate these different diagrams separately, keeping 
only the "leading" terms, i.e., those which contribute to the logarithmic 
interaction or the chemical potential in H[0o]  [Eq. (45)], and omitting 
terms e(~2/R2). 

(a)[ ( I  ( e )@ ~ ,  2 ~ (h) 

(b) I / -- / I 
I \ \ I / \ N ,  

(f) 1 ~ 2 

(c) (i) 
(d) ~ (g) 1 V 

2 

Fig. 4. Diagrams corresponding to the Gaussian approximation of the effective action 
~Er 
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Consider first the "chain" diagrams in Fig. 4: 

(a) = KI,  i2 Go(1 ' 6H 6H 2) 6@o(1) &@*(2) 

. ~ G o ( r = O )  ~c~ ~ 1 F / 1 2 = 0  R-~ (75) 
i 

where we used (54) for rn= 1. Similar arguments show that all of the 
"chain" diagrams [(b), (c), (d), and "longer" ones] are likewise (9(~2/R 2) 
and they will therefore be neglected. 

The "loop" diagrams (e), (f) .... in Fig. 4 are more interesting. The only 
one which gives a contribution to the logarithmic term in the vortex inter- 
action is diagram (e): 

( e ) = 2 G o ( r = 0 )  ~-2 f ( l -  p 2 ) 

1 (<-) 
~ ln(1 +2~X) (H[0o ]  + ~ N ) + O  ~-~ (76) 

where we used (69), (48) for ms= _+1 and N is the total number of vortices 
in Go. The higher-order loops all give positive contributions to the vortex 
chemical potential. The most important of them is 

-21 x ( f )  =p l, f Go(1,2)2[1_po(1)~][l_po(2)~]2 

<2~ -2 G ~-2 (1-Po)2.'~xN 1 b(.0 (77) 

where the ,%< sign expresses that we used a Schwarz inequality to estimate 
the integral at the 1.h.s., and we used (73), (37), (40) to evaluate the r.h.s. 
(note that we took the symmetry factor of the diagram already into 
account). Similarly we treat the next diagram, 

1 1 
(g) = ~--~ f, fz Go(I, 2) 2 [1 -po(1)2] [1  - 0o(2)23 cos 210o(1)-0o(2)]  

r c N X  ( f i2)  
< (78) 
~ 8  N 

where in addition we neglected the cosine factor on the 1.h.s., which is of 
course a more serious approximation; however, the contribution of (78) is 
smaller than that of (77) by a factor of 1/8 in any case, so we neglect this 
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error. We note that both approximations (77), (78) would be good in a 
limit where the range of Go(r) -~ is much smaller than that of [ 1 -  po(r)2], 
but (70), (32) imply that both ranges are actually of the order of~. 

The dominant class of terms in the whole series is given by loop 
diagrams of the form shown in Fig. 5 with n + 1 nodes, n = 1, 2 ..... and a 
symmetry factor of 1/(n+ 1) [the first two are (f) and (h) in Fig. 4]. An 
upper limit to the contribution of any of these diagrams may be found by 
again using a Schwarz inequality as above, and directly applying (72): 

n--x(Fig '5)+l  =t'~\~2) 1"'" ,+lG~176 

x [1 - p o ( l )  2] ... [1 -po(n+ 1) 2 ] 

1 --2 ~ 2 w ,  + I 
< 2ten(n+ 1) ~ (1 -PoJ  (79) 

The integrals on the r.h.s, monotonically tend to zero with increasing n and 
their coefficients alone form a rapidly converging series with sum 1/27z [for 
comparison, the first term corresponding to diagram (f) in Fig. 4 already 
contributes 1/4n]. Since we already overestimated the contributions of (f), 
(g), we therefore neglect all higher "loop" diagrams and hope for the best. 
We will see in the next subsection that any further positive contribution to 
the vortex chemical potential amplifies the observed effect and thereby 
strengthens our argument anyway. Putting everything together, we now 
obtain 

,~[~'o-] = - - ~ ln(1 + 2nX)  H [ r  + ln(1 + 2rtX) 

( , )  x 
+2rcN ~+~-~ 1 _~--~+C0 ~-i (80) 

which together with (60) gives the effective action of the interacting vortex 
system. 

n+l 

2 

3 

Fig. 5. Class of diagrams represented in Eq. (79). 
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We finally note that of course all loop diagrams in Figs. 4 and 5 can 
be calculated numerically to an arbitrary precision, but in view of the many 
approximations and qualitative arguments involved in our derivation of ,~ 
we considered the above rough estimation to be more adequate. 

4.4. Vor tex  Phase Space Division and Ef fect ive 
Cou lomb Gas Parameters  

The result (80) of the last subsection already correctly defines the 
partition sum (15) of the vortex system. However, the unit of length in (15) 
is 5 [which corresponds to Rc in Eq. (17)], so that in order to make the 
link to treatments of the neutral Coulomb gas in the literature we have to 
write the effective action in the form 

S[~'o] = ~ ~ mimi In I R i -  Rjl �9 5 + N l n z C ~  (81) 
I < j  

whereas in (60) the original lattice spacing a appears in the logarithm. 
Then (81) defines the effective dimensionless Coulomb gas temperature 
T c~ and fugacity z cG. Using the neutrality condition Y'.i mi = 0 and the fact 
that m;=  +1, we can rewrite the sum in (60) as 

Z m,m~ l n  IR'-Rj~I ~. mimj lnlR'-Rj------~I NIn-fi (82) 
�9 a 5 2 a i < j  i < j  

The second term will contribute to the fugacity z cG, so we have to express 
as a function of the model parameters a, ~. Recall that 5 was an infrared 

cutoff on phase fluctuations defined so as to have the same effect as a mass 
2/~ 2. To determine 5 from this condition, note that the most important 
term in the perturbation series is (f) in Fig. 4 [and Eq. (74)] since it is the 
only one which contributes to the logarithmic vortex potential. Its size is 
mainly determined by the factor 

K 1 ln(l+2rCa~_~2_0 (83) 

calculated in (69"). Now if one had chosen the "hard" momentum cutoff ~/5 
instead of the mass, the local fluctuations would have been given by 

K 2\  f d2k 1 1 f4'~/"2d(k2) 1 ln~_.~ 2 
~ (IqJl, , =  - - 2  k 2 ~ - -  (84) 

J~/,~<kx..,.<~/.(2rt) 4r~J4~/~: k - - 4 r e  a2 
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Identifying this expression with (83) leads to 

ln~ 1 ( ~2) a = ~ l n  l+2rt~z (85) 

or, equivalently, 
~2 = a 2 + 2n~2 (86) 

We insert (85) successively in (82), (60), (80) and obtain the required form 
(81) of the effective action, the Coulomb gas parameters now being given 
by the following expressions: 

1 
T c  G --  27tK- 2 ln(l + 2reX) (87) 

InzCG 1 { 1 } -- 2TCC 2 # x r  + F ( X )  -- ~ ln( 1 + 2nX) 

1 9rt X 
+~ln~l' +2rtX)+ 8 l + 2 n X  (88) 

0.08 

0.06 

Z CG 0 . 0 4  

0.02 

0.00 
0.00 

I a I I 
t #* a a n a 

~ j # osSa 

~ ] t t e t 
; : ,' , 

i j e SS 
i a o 
j #m o # 

~ s la j o  J 

1: ~:  / \ , \  ," ," 
.: q.' 

e a �9 ./.,,,, �9 �9 a o �9 �9 , �9 
p ~ �9 �9 �9 t 

, , , ,  �9 , . 1 ,  x X 

P ~ ,,* t J , , ' ~  s ~ s S S O  \ 
w s e t �9 �9 s s ~  

_ J  ~ . \ 

0.05 0.10 0.15 0.20 0.25 
7cc 

@a= 10: 

Fig. 6. Minnhagen's CG phase diagram as in Figs. 1 and 2, but now with our final zCO(TCC) 
relation for the GLCG [Eqs. (87), (88)], plotted for different values of r The limit ~/a=O 
corresponds to the ) Y  model as shown in Fig. 1. With increasing ~/a the zCC(T c~) line is 
shifted toward the upper part of the phase diagram, finally reaching the first-order part of the 
vortex unbinding transition. 
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where 2 /~xy=-1 .617  [see Eq. (56)], X=~2/a 2, and F(X) is defined by 
Eq. (59). 

Equations (87), (88) are the final results of this paper. The expression 
in curly brackets may be interpreted as a renormalized vortex chemical 
potential, whereas the second line of (88) contributes to the renormalized 
phase space division. 

In Fig. 6 the z cG vs. T co curves are drawn in Minnhagen's Coulomb 
gas phase diagram for different values of the GL correlation length ~. With 
increasing ~/a the curves cross the phase boundary at increasingly higher 
values of z cG, finally reaching the first-order regime for values of ~ > a. 

�9 Since we argued in Section 2.1 that in superconducting films always ~ >~ a, 
we conclude that the latter are good candidates for a first-order vortex 
unbinding transition. Because of the approximations and relatively rough 
estimations involved in our calculations we do not insist on the quantitative 
information conveyed by Fig. 6. However, we believe that the trend is clear 
enough to be reliable. 

Another interesting (although not unexpected) result might be that for 
increasing ~/a the transition occurs at increasingly higher values of K 
[which according to (3) corresponds to smaller values of the "physical" 
temperature]. In other words, the distance between Tv and T~o increases 
with increasing ~/a. 

5. S U M M A R Y  A N D  C O N C L U S I O N S  

In this paper, we investigated the nature of the transition in the two- 
dimensional Ginzburg-Landau model of a neutral superfluid. In doing this, 
we assumed, as is usually done, that the transition is caused by the collec- 
tive unbinding of vortex pairs. However, we paid particular attention to 
short-wavelength amplitude and phase fluctuations of the order parameter 
on length scales <4  (the Ginzburg-Landau correlation length), which we 
showed to be strongly coupled to the vortices. This is in contrast with pre- 
vious work in the literature, where amplitude fluctuations usually are 
neglected altogether and phase fluctuations are assumed to be only weakly 
coupled to the vortices. 

Eliminating perturbatively these short-wavelength fluctuations, we 
derived an effective free energy for the vortex degrees of freedom. We argued 
that this effective vortex gas still is a 2D Coulomb gas (i.e., the vortex- 
vortex interaction varies logarithmically at large distances); however, both 
the effective temperature and the fugacity of the Coulomb gas are strongly 
renormalized if r is larger than a microscopic cutoff length a for fluctua- 
tions. We argued that these considerations should be relevant for those 

822/76/1-2-27 
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superconducting films for which a BCS description is qualitatively correct, 
since BCS theory predicts that always ~ > a. 

By this elimination process of small-scale fluctuations we furthermore 
obtained a microscopic interpretation of the effective vortex phase space 
division A as an interesting secondary result. In particular, we could clarify 
the relation between ,d and the Ginzburg-Landau correlation length ~. 

Our subsequent conclusions concerning a possible first-order transition 
then relied completely on the correctness of Minnhagen's self-consistent 
theory of a dense 2D Coulomb gas, which predicts a first-order vortex 
unbinding transition with nonuniversal (not KT-like) properties for suf- 
ficiently large values of the vortex fugacity (zCC>0.05). Unfortunately, 
the rather subtle differences between a KT-like and a first-order vortex 
unbinding transition seem to be outside the scope of present experimental 
investigations of real superconducting films. However, we think that an 
interestingly and probably feasible (though likewise very hard) problem 
would be to investigate numerically the critical properties of a lattice 
Ginzburg-Landau model including fluctuating order parameter amplitudes. 
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